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Long-term exposure to air pollution
and severe COVID-19 in Catalonia: a
population-based cohort study
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Alex Rico1,2,3, Joan Ballester 1, Xavier Basagaña 1,2,3, Carlos Chaccour 1,4,5,
Payam Dadvand 1,2,3, Talita Duarte-Salles 6, Maria Foraster1,2,3,7,
Mark Nieuwenhuijsen1,2,3, Jordi Sunyer1,2,3, Antònia Valentín 1,2,3,
Manolis Kogevinas1,2,3, Uxue Lazcano 8,9, Carla Avellaneda-Gómez10,
Rosa Vivanco9 & Cathryn Tonne 1,2,3

The association between long-term exposure to ambient air pollutants and
severe COVID-19 is uncertain. We followed 4,660,502 adults from the general
population in 2020 in Catalonia, Spain. Cox proportional models were fit to
evaluate the association between annual averages of PM2.5, NO2, BC, and O3 at
each participant’s residential address and severe COVID-19. Higher exposure
to PM2.5, NO2, and BC was associated with an increased risk of COVID-19 hos-
pitalization, ICU admission, death, and hospital length of stay. An increase of
3.2 µg/m3 of PM2.5 was associated with a 19% (95% CI, 16–21) increase in hos-
pitalizations. An increase of 16.1 µg/m3 of NO2 was associated with a 42% (95%
CI, 30–55) increase in ICU admissions. An increase of 0.7 µg/m3 of BC was
associated with a 6% (95% CI, 0–13) increase in deaths. O3 was positively
associatedwith severeoutcomeswhen adjustedbyNO2.Our study contributes
robust evidence that long-term exposure to air pollutants is associated with
severe COVID-19.

Ambient air pollution is a main contributor to the global burden of
disease, including cardiovascular and respiratory diseases1. Although
there is extensive literature on the effects of short- and long-term
exposure to ambient air pollution on chronic respiratory diseases2,
evidence is limited for long-termexposure and incidenceor severity of
acute respiratory infections3.

COVID-19, caused by infection by the SARS-CoV-2 virus, mainly
presents as an acute respiratory infection. Several risk factors have
been identified for progression to severedisease andmortality, suchas
age, male sex, and chronic comorbidities4. It is well known that air

pollutants, both particulatematter andgases, can impair lungdefenses
against infections5. Additionally, there is evidence showing the
potential effect of air pollutants upregulating the expression of SARS-
CoV-2 receptors in the lung6. Early in the pandemic, ecological studies
reported associations between ambient air pollution and increased
risk of hospitalization and death by COVID-197. However, individual-
level cohort studies are needed to overcome the multiple methodo-
logical limitations of ecological studies on the topic7,8. A number of
individual-level studies reported positive associations between long-
term exposure to air pollutants and hospital admission or death,
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particularly for fine particulate matter [PM with an aerodynamic dia-
meter of ≤2.5 µm] (PM2.5) but less consistently for nitrogen dioxide
(NO2). These studies followed cohorts of positive COVID-19 cases9–11 or
selected populations12–15, and one analyzed the general population16.
However, several knowledge gaps remain due to the heterogeneity in
observed estimates for COVID-19 severity12,17 and death9,10,12,18, likely
because of the limited sample size and the number of events in pre-
vious studies, and the lack of multi-pollutant models.

To address these evidence gaps, we analyzed a large population-
based cohort of the general population in Catalonia. We investigated
associations between PM2.5, NO2, ozone (O3) and black carbon (BC)
and hospital and intensive care unit (ICU) admission, hospital length of
stay, and death related to COVID-19 during 2020.

Results
Population and exposure characteristics
Figure 1 shows the course of the COVID-19 pandemic during 2020 in
Catalonia, Spain. The study flowchart is shown in Supplementary
Fig. S1. From 4,669,011 adult individuals alive and residing in Catalonia
on March 1, 2020, we excluded 409 (<0.1%) because of loss to follow-
up, 589 (<0.1%) because of inconsistent dates, 1512 (<0.1%) missing
residential address and 5999 (0.1%) missing air pollutants exposure
values, resulting in 4,660,502 individuals included in our analyses.

In 2020, there were 340,608 COVID-19 diagnoses, of which
216,752 (64%) were laboratory confirmed. The majority of COVID-19
diagnoses occurred at the primary care units (249,878; 73%). Among
the 340,608 cases, there were 47,174 (14%) COVID-19-related

hospitalizations, 4699 (1.4%) ICU admissions, and 10,001 COVID-19-
related deaths (3%). Among the 10,001 deaths, 3744 (37%) occurred
among non-hospitalized individuals. The median hospital LOS was 7
[p25–p75: 4–14] days. The description of the COVAIR-CAT cohort and
COVID-19-related events is shown in Table 1.

Annual averages (SD) of air pollution in the cohort were 13.9 (2.2)
µg/m3 for PM2.5, 26.2 (10.3) µg/m3 for NO2, and 91.6 (8.2) µg/m3 for O3

from the COVAIR-CAT 2019 models. The distribution of these pollu-
tants’ concentrations and the exposure estimates from the ELAPSE
models and their correlations are shown in Supplementary Methods.

Associations with COVID-19 severe events
In single-pollutant models (Main Model–Model 4, Table 2 and Fig. 2),
higher annual average exposure toPM2.5 andNO2was associatedwith a
greater hazard of COVID-19-related events. For PM2.5, there were
positive associations for hospitalization (HR 1.19, 95%CI, 1.16–1.21), ICU
admission (HR 1.16, 95% CI, 1.09–1.24), and death (HR 1.13. 95% CI,
1.07–1.19) per IQR increase. For NO2, there were positive associations
for hospitalization (HR 1.25, 95% CI, 1.22–1.29), ICU admission (HR 1.42,
95% CI, 1.30–1.55), and death (HR 1.18, 95% CI, 1.10–1.27) per IQR
increase. For both PM2.5 and NO2, positive associations were observed
for hospital LOS. In two-pollutant models, NO2 remained positively
associated with hospital and ICU admission after adjustment for PM2.5.
Similarly, positive associations for PM2.5 remained for hospital
admission and hospital LOS after adjustment for NO2. For O3, the
association was negative for COVID-19-related events in single-
pollutant models and null or positive when co-adjusted for NO2: HR
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Fig. 1 |WeeklyCOVID-19 cases and severe relatedevents during 2020 inCatalonia, Spain.The vertical dashedblack line refers to the limit between the first and second
waves (June 21, 2020).
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1.10 (95% CI, 1.02–1.18) for ICU admission and 1.01 (95% CI, 0.95–1.07)
for death per IQR in O3. Regarding hospital LOS, O3 was positively
associated with hospital LOS in two-pollutant models (Supplementary
Table S1, Supplementary Fig. S2). Unadjusted estimates are shown in
Supplementary Table S2. Results per one-unit increase in air pollution
are shown in Supplementary Table S3.

All associations were comparable with Model 4 (main model) in
sensitivity analyses, except when including cases diagnosed at nursing
homes and evaluatingCOVID-19 deaths (Fig. 2; Supplementary Figs. S2,
S3, S4, and S5; Supplementary Tables S4, S5, and S6). When evaluating
associations by wave, the estimated measures of effect for the first
wave were of greater magnitude than for the second wave for hospi-
talization (Table 3, Supplementary Table S7). The majority (80.4%) of
hospital admissions had COVID-19 mentioned as a cause of hospital
admission. The association of long-term exposure to air pollutants
with hospitalization had also slightly greater magnitude for COVID-19-

related hospitalization defined by COVID-19 or respiratory causes, or
COVID-19 only, as main causes of admission, compared to all-cause
admissions (Table 4, Supplementary Tables S8 and S9).

When evaluating the subset with COVID-19 diagnosis, the results
were consistent with the main analysis for hospitalizations and ICU
admission, although of a smaller magnitude than the main analysis for
NO2 and PM2.5. The associations with death were null in the whole
period while positive in the second wave for NO2 and PM2.5 (Supple-
mentary Tables S10, S1, and S12). Overall, there were no associations
for O3, except positive associations for death during the first wave.
Effect estimates based on the COVAIR-CAT exposure models for 2018
and ELAPSE-2010 were broadly comparable to those in the main ana-
lyses (Supplementary Tables S13 and S14). For BC, there were positive
associations for hospitalizations (HR 1.19, 95% CI, 1.16–1.22), ICU
admissions (HR 1.19, 95% CI, 1.10–1.28), deaths (HR 1.06, 95% CI,
1.00–1.13) and hospital LOS (IRR 1.04, 95% CI, 1.02–1.07).

Table 1 | Characteristics of the cohort overall and according to COVID-19 outcomes

Overall COVID-19hospital admission COVID-19 ICU admission COVID-19 death

n 4,660,502 47,174 4699 10,001

Age, years, mean (SD) 53.6 (17) 65.7 (17) 63.3 (12) 81.7 (10)

Female, n (%) 2,446,855 (52.5) 22,288 (47.2) 1508 (32.1) 5149 (51.5)

Tobacco smoking, n (%)

Non-smoker 3,033,731 (65.1) 31,911 (67.6) 2878 (61.2) 6943 (69.4)

Former smoker 680,895 (14.6) 10,057 (21.3) 1242 (26.4) 2254 (22.5)

Active smoker 945,876 (20.3) 5206 (11.0) 579 (12.3) 804 (8.0)

Individual income group, n (%)

Low 3,240,314 (69.5) 34,119 (72.3) 3229 (68.7) 7909 (79.1)

Middle 1,393,153 (29.9) 12,826 (27.2) 1441 (30.7) 2055 (20.5)

High 27,035 (0.6) 229 (0.5) 29 (0.6) 37 (0.4)

Health risk group, n (%)

Healthy 2,334,035 (50.1) 11,681 (24.8) 1250 (26.6) 567 (5.7)

Low 1,394,963 (29.9) 13,601 (28.8) 1563 (33.3) 1903 (19.0)

Moderate 698,598 (15.0) 13,133 (27.8) 1252 (26.6) 3838 (38.4)

High 232,906 (5.0) 8759 (18.6) 634 (13.5) 3693 (36.9)

Chronic comorbidities, n (%)

Diabetes mellitus 471,419 (10.1) 11,959 (25.4) 1350 (28.7) 3731 (37.3)

Obesity 1,160,099 (24.9) 19,701 (41.8) 2341 (49.8) 3927 (39.3)

COPD 223,500 (4.8) 6128 (13.0) 557 (11.9) 2116 (21.2)

Hypertension 1,181,252 (25.3) 22,578 (47.9) 2229 (47.4) 6839 (68.4)

Other cardiovascular disorders 364,787 (7.8) 9538 (20.2) 785 (16.7) 3662 (36.6)

Dyslipidemia 1,305,896 (28.0) 20,539 (43.5) 2209 (47.0) 5119 (51.2)

Nursing home status - 4433 (9.4) 128 (2.7) 2933 (29.3)

Area of residence indicators

Urbanicity, n (%)

City 2,893,786 (62.1) 33,434 (70.9) 3287 (70.0) 6630 (66.3)

Town and suburb 1,360,492 (29.2) 11,021 (23.4) 1122 (23.9) 2740 (27.4)

Rural 406,224 (8.7) 2719 (5.8) 290 (6.2) 631 (6.3)

Socioeconomic indexes

Small area socioeconomic index, median [IQR] 41.05 [32.20, 49.45] 41.71 [32.69, 50.90] 42.32 [33.72, 51.26] 40.78 [32.16, 49.50]

Deprivation index, z-score, median [IQR] −0.54 [−1.04, −0.04] −0.52 [−1.03, 0.02] −0.45 [−0.98, 0.09] −0.60 [−1.09, −0.06]

Percentage of non-Spanish residents, %, median [IQR] 11.8 [7.0, 18.2] 12.5 [7.6, 19.3] 13.2 [8.0, 20.4] 12.0 [7.3, 18.2]

Gini index, median [IQR] 29.5 [27.2, 32.3] 29.6 [27.2, 32.2] 29.6 [27.3, 32.2] 29.7 [27.3, 32.4]

Health access

Distance to closest primary care unit, meters, med-
ian [IQR]

422 [262, 644] 409 [258, 600] 397 [252, 587] 422 [264, 632]

Average weekly TPP, %, median [IQR] 9.16 [7.95, 10.01] 9.19 [8.09, 10.01] 9.19 [8.09, 10.14] 9.16 [8.09, 10.14]

Higher values of the small area socioeconomic index denote a worse socioeconomic position compared to the average of Catalonia; higher values of the deprivation index denotemore deprivation
Compared with the average of Spain.
COPD chronic obstructive pulmonary disease, TPP test-positive proportion.
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There was no clear evidence of departure from linearity for the
association between NO2 and PM2.5 and COVID-19-related hospitali-
zations, ICU admissions, and deaths (Supplementary Figs. S5, S6, and
S7), particularly in the most common exposure range.

Discussion
We observed a positive association between long-term exposure to
PM2.5 and NO2 with severe COVID-19 in this large population-based
cohort of adults in Catalonia, Spain, a country with a high burden of

COVID-19 in 2020. In sensitivity analyses, associations were stable in
two-pollutant models when accounting for different adjustments and
when using different outcome definitions and air pollutant exposure
models. O3 was positively associated with severe outcomes when
adjusted by NO2.

Our estimates for long-term PM2.5 and COVID-19-related hospita-
lization are consistent with other cohorts of COVID-19 cases9,10. The
association for hospitalization ranged from an odds ratio of 1.06 (95%
CI, 1.01–1.12, per 1.7μg/m3 (IQR) increase) to HR of 1.24 (95% CI,
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Fig. 2 | Sequential adjustment and sensitivity analyses forassociations between
long-term exposure to NO2 and PM2.5 and COVID-19-related hospitalization
(single-pollutantmodels).These estimates are from the sequential adjustment for
confounding (black estimates,models 1–4) and six a priori sensitivity analyses (blue

estimates, models 5–10), as described in “Methods”. Error bars refer to the 95%
confidence interval from the Cox Proportional Hazards model. cov denotes cov-
ariates; M denotes model; SES denotes socioeconomic status.

Table 2 | Adjusted associations between long-term air pollutants and COVID-19-related outcomes in single and two-pollutant
models

COVID-19 hospital admission* COVID-19 ICU admission* COVID-19 death* Hospital length of stay*
Exposure HR (95% CI) HR (95% CI) HR (95% CI) IRR (95% CI)

COVAIR-CAT models

NO2 (IQR increase: 16.1) Single-pollutant 1.25 (1.22–1.29) 1.42 (1.30–1.55) 1.18 (1.10–1.27) 1.06 (1.03–1.09)

PM2.5 (IQR increase: 3.2) Single-pollutant 1.19 (1.16–1.21) 1.16 (1.09–1.24) 1.13 (1.07–1.19) 1.06 (1.04–1.08)

COVAIR-CAT models

NO2 (IQR increase: 16.1) Adjusted for PM2.5 1.12 (1.08–1.17) 1.51 (1.33–1.72) 1.10 (0.99–1.22) 0.99 (0.95–1.03)

NO2 (IQR increase: 16.1) Adjust for O3 1.24 (1.19–1.29) 1.58 (1.39–1.79) 1.19 (1.08–1.31) 1.07 (1.03–1.12)

PM2.5 (IQR increase: 3.2) Adjusted for NO2 1.12 (1.08–1.15) 0.93 (0.85–1.03) 1.08 (1.00–1.16) 1.07 (1.04–1.10)

PM2.5 (IQR increase: 3.2) Adjust for O3 1.16 (1.13–1.19) 1.13 (1.04–1.22) 1.12 (1.05–1.19) 1.07 (1.05–1.10)

*The analyses of COVID-19 hospital admission, ICU admission, and deathwere conducted in the whole population, while hospital length of stay was conducted among those with COVID-19 hospital
admission. Estimates fromModel 4, which included: age (continuous term, penalized splinewith 6 df) + sex (strata, 2 categories) + smoking status (factor, 3 categories) + individual income (factor, 3
categories) + health risk group (factor, 4 categories) + small area socioeconomic index (continuous term) + percentage of non-Spanish nationals (continuous term) + distance to the closest primary
care unit (continuous term) + urbanicity (strata, 3 categories) + average weekly of test-positive proportion (continuous term) + health region (strata, 7 categories).
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1.16–1.32, per 1.5μg/m3 (SD) increase) in analyses conducted in 150,000
COVID-19 cases in Ontario, Canada10 and 75,000 cases in California,
US9. In contrast with our findings, analyses in these two cohorts and
other individual-level studies12,15,18 observed no evidence of an asso-
ciation between long-term NO2 and hospitalization. Regarding BC,
there was no evidence of an association with severe COVID-19 in two
studies that evaluated this pollutant13,15. The limited sample size and
selected population could explain the differences in our findings.

Overall, our estimates are slightly greater in magnitude than the
previous literature for COVID-19 hospitalization (Supplementary
Table S15), although a direct comparison is not straightforward
because of differences in exposure assessment, confounder adjust-
ment, and outcome definition. One possible explanation for the
observed differences is that we analyzed a population-based cohort;
thus, our estimates encompassed the risk of infection and the asso-
ciated risk of severe COVID-19 following infection. In contrast, cohorts
including only COVID-19-diagnosed individuals estimated the risk of
severe COVID-19 following infection19. We observed greater estimates
during the first wave, which may reflect higher levels of susceptibility
to severe COVID-19 compared to the second wave or unmeasured

contextual confounding factors such as spatiotemporal patterns in
health system capacity, which were less influential in the second wave.

Estimates for the association of long-term air pollution exposure
with COVID-19 death are more inconsistent in the literature compared
to those for hospitalization10–13,16,18. A population-based cohort study
from the general adult population in Rome (n = 1,594,308) observed an
HRof 1.08 (95%CI, 1.03–1.13, per IQR0.92μg/m3 increase) for long-term
PM2.5 and 1.09 (1.02–1.16, per IQR9.22μg/m3 increase) for the long-term
NO2 for COVID-19-related deaths16. These estimates are smaller than in a
population-based cohort of COVID-19 cases (n = 3,139,804) in Cali-
fornia, US11, where the estimated long-termPM2.5 associationwith death
was a RR of 1.04 (95% CI, 1.03, 1.05), and similar to the estimate in this
study (HR of 1.04, 95% CI, 1.02–1.06, both for 1μg/m3 increase in PM2.5).
Nevertheless, a cohortwith 150,000COVID-19 cases inCanada reported
null associations for death, while positive association for hospital and
ICU admission10; a cohort of a selected population from the UK (UK-
Biobank cohort, n =424,721) observed null results for death for PM2.5

(HR 1.00, 95% CI, 0.89–1.11, per IQR 1.27μg/m3 increase) and NO2 (HR
1.03, 95% CI, 0.90–1.16, per IQR 9.93μg/m3 increase)12.

The estimates for the association between O3 and severe COVID-
19 are hard to interpret because of its high negative correlation with
the other pollutants, particularly NO2 (r = −0.82, Supplementary
Methods). This could be observed in two-pollutantmodels with null or
positive estimates, contrasting with single-pollutant models.

We evaluated hospital LOS as a surrogate of the COVID-19 severity
and burden in the health system20,21. The LOS is the result of patient
severity, delivered care, and hospital performance, reflecting the
required number of staff, beds, and devices and associated costs20,21.
We observed a positive association between long-term PM2.5 and NO2

with hospital LOS.We observed a greatermagnitude of the association
between ICU admission and hospitalization compared to death, a
pattern also observed in the majority of studies that evaluated more
than one severity outcome9,10. Other individual factors may explain
these differences in the magnitude of effect, such as frailty, given that
frail individuals weremore likely to die out of the hospital or were not
eligible for ICU care, especially during the first waves.

There are several biological mechanisms through which long-
term air pollution could increase the risk of severe COVID-19. An initial
hypothesis was that long-term air pollution increases the baseline risk
of the population exposed to higher levels, resulting in a greater pre-
valence of chronic comorbidities associated with severe COVID-19,
such as hypertension. In this case, chronic comorbidities associated
with long-term exposure to air pollution would mediate the associa-
tion between long-term exposure and severe COVID-19. Although we
did not perform a formal causal mediation analysis22, adjustment for
chronic comorbidities associated with air pollution in our sensitivity

Table 4 | Adjusted long-term associations between air pollutants and COVID-19-related hospitalization in single and two-
pollutant models, comparing all-cause with cause-specific hospitalizations

All cause (n = 47,174) COVID-19 or respiratory* (n = 36,505) COVID-19* (n = 33,981)
Exposure HR (95% CI) HR (95% CI) HR (95% CI)

COVAIR-CAT models

NO2 (increase: 16.1) Single-pollutant 1.25 (1.22–1.29) 1.27 (1.23–1.32) 1.27 (1.23–1.32)

PM2.5 (increase: 3.2) Single-pollutant 1.19 (1.16–1.21) 1.21 (1.18–1.24) 1.21 (1.18–1.24)

COVAIR-CAT models

NO2 (increase: 16.1) Adjusted for PM2.5 1.12 (1.08–1.17) 1.13 (1.08–1.19) 1.12 (1.07–1.18)

NO2 (increase: 16.1) Adjusted for O3 1.24 (1.19–1.29) 1.29 (1.23–1.35) 1.26 (1.20–1.32)

PM2.5 (increase: 3.2) Adjusted for NO2 1.12 (1.08–1.15) 1.13 (1.09–1.17) 1.14 (1.10–1.18)

PM2.5 (increase: 3.2) Adjusted for O3 1.16 (1.13–1.19) 1.19 (1.16–1.22) 1.18 (1.15–1.22)

Model adjusted asModel 4: age (continuous term, penalized spline with 6 df) + sex (strata, 2 categories) + smoking status (factor, 3 categories) + individual income (factor, 3 categories) + health risk
group (factor, 4 categories) + small area socioeconomic index (continuous term) +percentageof non-Spanishnationals (continuous term) +distance to the closestprimarycareunit (continuous term)
+ urbanicity (strata, 3 categories) + average weekly of test-positive proportion (continuous term) + health region (strata, 7 categories).
*Defined by the ICD-10 code first position.

Table 3 | Adjusted long-term associations between air pollu-
tants and COVID-19-related outcomes in single-pollutant
models by COVID-19 waves

First wave Second wave
Exposure HR (95% CI) HR (95% CI)

Hospitalization

NO2 (IQR increase: 16.1) 1.32 (1.27–1.37) 1.16 (1.11–1.22)

PM2.5 (IQR increase: 3.2) 1.25 (1.21–1.28) 1.11 (1.07–1.14)

ICU admission

NO2 (IQR increase: 16.1) 1.48 (1.32–1.67) 1.34 (1.18–1.53)

PM2.5 (IQR increase: 3.2) 1.19 (1.09–1.30) 1.12 (1.02–1.23)

Death

NO2 (IQR increase: 16.1) 1.15 (1.06–1.25) 1.25 (1.10–1.41)

PM2.5 (IQR increase: 3.2) 1.12 (1.06–1.20) 1.14 (1.04–1.25)

Hospital LOS

NO2 (IQR increase: 16.1) 1.06 (1.03–1.10) 1.03 (0.99–1.06)

PM2.5 (IQR increase: 3.2) 1.07 (1.04–1.09) 1.05 (1.02–1.07)

Time-stratifiedCoxmodel adjusted asModel 4: age (continuous term, penalized splinewith 6 df)
+ sex (strata, 2 categories) + smoking status (factor, 3 categories) + individual income (factor, 3
categories) + health risk group (factor, 4 categories) + small area socioeconomic index (con-
tinuous term) + percentage of non-Spanish nationals (continuous term) + distance to the closest
primary care unit (continuous term) + urbanicity (strata, 3 categories) + average weekly of test-
positive proportion (continuous term) + health region (strata, 7 categories)
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analysis (model 5) resulted in minimal change in the estimates, similar
to findings in other cohort studies11,16, suggesting other direct path-
ways are more relevant. A limitation to interpreting these estimations
is that our main model includes a health risk index, in which chronic
comorbidities partially contribute to its estimation23. Another
hypothesis is that air pollution exposure could facilitate SARS-CoV-2
binding based on evidence that exposure to particulate matter upre-
gulates the expression of SARS-CoV-2 receptors in the lung (e.g.,
angiotensin-converting enzyme 2)6. If this hypothesis is further vali-
dated, it is likely the association between air pollution and severe
COVID-19 could be driven mainly by other mechanisms than by
increasing the overall population risk due to chronic comorbidities.
Exposure to air pollution may also be related to changes in immune
defenses that are key to mitigating SARS-CoV-2, such as a decrease in
type II interferon response to SARS-CoV-2 and antibody response15,24.
All of these hypothesized mechanisms would result in a population
susceptible to severe COVID-19; however, further studies are needed
to understand the main biological pathways involved.

Strengths of our analysis include the combination of population
representativeness spanning large urban and rural areas, with detailed
individual-level data for exposures and confounding adjustment in a
country heavily affected by the pandemic during 2020, yielding good
statistical power and external validity of our analysis. This allowedus to
properly evaluate contrasting results in the literature, such as for NO2

andBC.Weevaluated two-pollutantmodels, a range of complementary
outcomes including health system burden, several sensitivity analyses,
and assessed the shape of the exposure-response function. Addition-
ally, we used a state-of-the-art exposure assessment model developed
for COVAIR-CAT for the study period, providing updated estimates of
ambient air pollution in the region at fine spatiotemporal resolution.

We evaluated the first year of the pandemic, a period without
COVID-19 vaccines and Variants of Concern; thus, our estimates may
not be representative of the effect of air pollution on COVID-19 in the
later phases of the pandemic. However, Chen et al. observed positive
associations between ambient PM2.5 andNO2 and severe COVID-19 after
extending the follow-up of an earlier analysis of COVID-19 patients9 to
include the Delta Variant of Concern period25. By extending the follow-
up, the authors could evaluate the role of vaccination status; initial
results showed an association between ambient pollution and severe
COVID-19 outcomes in both vaccinated and unvaccinated individuals25.

We lacked data on some individual-level potential confounders,
such as race/ethnicity, migration status, physical activity, and occu-
pation. The adjustment for individual-level income could partially
adjust for some of these variables, but residual confounding may still
be present.

We operationalized our outcome definition based on a time-
defined window from clinically or laboratory-confirmed COVID-19
diagnosis. This allowed us to deal with the lack of access to testing
during the first wave and avoid selection bias26, although some mis-
classification in COVID-19 diagnosis may have been present for cases
not laboratory confirmed. This pragmatic time-defined definition, used
indifferent studies andpolicy decisions forCOVID-199,16, captured acute
complications of COVID-19 occurring within 30 days of infection but
could also include some unrelated COVID-19 hospitalizations. However,
results from our sensitivity analyses addressing these limitations, such
as analyzing only laboratory-confirmed cases and cause-specific hospi-
talizations, yielded similar estimates. When evaluating the cohorts of
COVID-19 diagnosis in sensitivity analyses, we observed smaller esti-
mates compared with themain analysis; however, estimates based only
on individuals who were tested are likely affected by selection bias27,28.

Long-term exposure to ambient air pollution was positively
associated with severe COVID-19 events, including COVID-19-related
hospitalization, ICU admission, and deaths, as well as the length of
hospital stay in a large, population-based cohort. Our findings add
further compelling evidence on the importance of reducing air

pollution levels to improve population health generally and severe
acute respiratory infection specifically.

Methods
Study design and population
We constructed a population-based cohort of the adult population of
Catalonia (the northeast region of Spain) as part of the COVAIR-CAT
study. The COVAIR-CAT cohort was built through record linkage using
data collected in the public health administration databases of
Catalonia22. The public healthcare system covers nearly the entire
population (98.8%of the 7.4million in 2015)29. Catalonia (32,113 km2) is
composed of 947 municipalities grouped in seven health regions
(median area of 5425 km2). Health regions administer the public health
system, accounting for geographical, socioeconomic, demographic,
and health facility availability differences, with the aimof guaranteeing
equitable healthcare access. Healthcare management areas (AGA,
n = 43, median area 389 km2) are territorial boundaries based on the
aggregation of nested primary care service areas (ABS, n = 374,median
area 14 km2. Maps of the health areas are shown in Supplementary
Methods). These geographic units are used for the operational plan-
ning, coordination, and analysis of the main flows between primary
care and basic hospital care.

The original cohort included 5,127,059 adults (≥18 years) residents
ofCataloniawhowere coveredby thepublic healthcare system in 201522.
COVAIR-CAT includes all individuals from the cohortwhowere alive and
residing in Catalonia on March 1, 2020 (n =4,669,011), excluding the
population that arrived in Catalonia between the years 2016 and 2020.
We followed participants through December 31, 2020. A detailed
description of the cohort construction is in Supplementary Methods.

Data were managed to ensure anonymization in accordance with
current data protection legislation by the Agency for Health Quality
and Assessment of Catalonia (AQuAs). The cohort design, definitions,
and analysis plan were pre-specified in a protocol before any data
extraction. Anydeviance from the initial plan is labeled aspost-hoc.We
received approval from our local ethics committee Parc de Salut Mar
Ethics Committee (CEIM-PS MAR, no. 2020/9610).

Data sources
Participants were identified from the Catalan Central Registry of
Insured Persons, which collects sociodemographic, migration, and
vital status information using a unique identifier. We used this unique
identifier for a deterministic linkage across different administrative
databases: primary care (CMDB-AP), urgency care (CMDB-URG), and
acute hospital discharge (CMBD-AH), which provided detailed infor-
mation on comorbidity and hospital and ICU admissions based on
International Classification of Diseases (ICD) codes (ICD-09 before
2017 and ICD-10 after 2017)22,30. Additionally, we used data from a
surveillance system of SARS-CoV-2 tests performed in Catalonia
(SUVEC) to gather information on RT-qPCR and rapid antigen tests
among cohortparticipants.Weusedother public sources for area-level
covariates, such as the 2011 Spanish Census, satellite data, and a
COVID-19 pandemic indicator (i.e., weekly test-positive proportion31).

Outcomes
Our primary outcome was COVID-19-related hospitalization. Second-
ary outcomes were COVID-19-related death, ICU admission, and hos-
pital length of stay (LOS). We defined a COVID-19-related event as
events that occurredwithin 30 days of COVID diagnosis9,16. We defined
an individual with a COVID-19 diagnosis as those with a positive RT-
qPCR or rapid antigen test (laboratory-confirmed COVID-19 diagnosis)
or those with a clinical diagnosis of COVID-19. Clinical diagnosis of
COVID-19wasdefinedby the respective ICD-10 codes, as notified in the
administrative healthcare databases. The first COVID-19 diagnosis
could be in primary care, urgency care units, or hospitals. We con-
sidered COVID-19 diagnoses in the general population, excluding
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diagnoses at nursing homes in the main analysis, because of their high
frailty, markedly different pattern of COVID-19 spread and eligibility
for hospital admission compared to the general population, and their
clustered air pollutionexposure10. For this analysis, we consideredonly
the first COVID-19 diagnosis from March 1, 2020, to December 31,
2020. After identifying the date of the first COVID-19 diagnosis, we
defined a COVID-19-related hospitalization as a hospital admission by
any cause occurring in the following 30 days and a COVID-19-related
death as death by any cause occurring in the following 30 days16. To
account for individuals who were first hospitalized and had a sub-
sequent COVID-19 diagnosis, particularly during the first wave of the
pandemic in Spain, we also considered hospitalizations that occurred
in the previous 10 days of the first COVID-19 diagnosis. For each
COVID-19-related hospitalization, we retrieved data on whether the
participant was admitted to the ICU and the hospital LOS during that
hospitalization.

Exposures
We assessed individual-level exposure to ambient levels of PM2.5, NO2,
and O3 from the COVAIR-CAT exposure assessment models. We
developed an exposure assessment for daily temperature, PM2.5, PM10,
NO2, and maximum 8h-average O3 at a spatial resolution of 250m for
the period 2018–2020 in Catalonia. We used meteorological and air
pollution data from the Catalan and Spanishmonitoring networks and
applied machine learning methods tailored for spatiotemporal pre-
diction (Random Forest-based spatial variable selection)32. From the
daily estimates, we obtained the annual average of PM2.5 and NO2 and
the warm season average for O3, corresponding to 2019. The station-
based nested 10-fold cross-validation R2 was 0.61 for PM2.5, 0.77 for
NO2, and 0.87 for O3. In a complementary analysis, we used the annual
average estimates of the PM2.5, NO2, O3, and BC derived from land-use
regression models developed through the ELAPSE (Effects of Low-
Level Air Pollution: A Study in Europe) project for 201033. We assigned
the 2019 air pollutant exposures to each participant’s residential
address at the start of 2021 or the last available because we did not
have the residential address at the start of 2020 as the address registry
for 2020 in Catalonia was disrupted by the pandemic.

Detailed information about the COVAIR-CAT and ELAPSE models
is provided in Supplementary Methods.

Covariates
We obtained age, sex, individual-level income, and health risk group in
2015 from the Central Registry of Insured Persons. Individual income
group was based on the co-payment system for drug dispensations,
which largely depends on income22. Individual health risk group is a
validated ordinal index that encompassesmultimorbidity and levels of
patient complexity, accounting for acute, chronic or oncological
morbidities, single ormultimorbidity,medications, and demandof the
health system30,34.

Tobacco smoking status (non-smoker, former smoker, or active
smoker), previous chronic comorbidities, and body mass index were
obtained from the primary care database. Selected chronic comor-
bidities were also obtained from the hospital admissions database
(e.g., chronic obstructive pulmonary disease)22. Nursing home status
for those with COVID-19 diagnosis was obtained from the COVID-19
surveillance system.

Area-level indicators were linked to individuals’ residence
addresses. The urbanicity index divided municipalities into towns,
urban, and rural areas. The small area socioeconomic index was
ascertained at the ABS level22,35, while the deprivation and Gini indexes
and the proportion of non-Spanish residents were ascertained at the
census tract level22. As a surrogate for public health system accessi-
bility, we derived the distance from the residence to the closest pri-
mary care center. Finally, we obtained the weekly test-positive
proportion of RT-qPCR and rapid antigen tests at the AGA level.

A detailed description of all covariates is shown in Supplementary
Methods.

Data analysis
We described continuous variables using mean± standard deviation
(SD) or median [p25–75] and categorical variables as proportions.
There were missing values for tobacco smoking and body mass index
covariates. For the main analysis, we considered a missing value on
tobacco smoking as a non-smoker because the value is most often
omitted for non-smokers in the primary care service, while body mass
index was used only for sensitivity analysis after multiple imputations.

WefitCoxproportional hazardsmodels to estimate the association
between the 2019 annual average air pollution and COVID-19-related
hospitalization, ICU admission, and death, with separate models for
each pollutant and outcome. The analyses of COVID-19-related hospi-
talization, ICU admission, and death were conducted in the whole
population19, while the analysis of hospital length of staywas conducted
on those individuals with COVID-19-related hospitalization. Our main
analyses are based on the COVAIR-CAT estimates for 2019, and we
evaluated single- and two-pollutant models. We accounted for the
competing event of death when evaluating COVID-19-related hospita-
lization and ICU admission by censoring a death event using the cause-
specific HR framework36,37. Follow-up started onMarch 1, 2020, and for
the primary outcome (COVID-19 hospitalization), right-censoring
occurred at the first instance of death, 30 days after the first COVID-
19 diagnosis, emigration outside the study area, or the end of the study
period.Weused the time fromMarch 1, 2020, indays as the time scale in
the time-to-event analysis. We assessed the proportional hazards
assumption of our models by visual inspection of score residuals plot-
ted against event time. We fitted negative binomial regression models
to estimate the association between the 2019 annual average air pol-
lution and hospital LOS among those individuals that were
hospitalized38. Measures of association for air pollutants were reported
as hazard ratios (HR) or incidence rate ratios (IRR) per interquartile
range (IQR) increase, with their 95% confidence intervals (CI).

We performed the following sequential adjustment for all expo-
sures and outcomes, as pre-defined based on a priori theoretical
assumptions about the relationship between the covariates and the
outcome:
a. Model 1, adjusted for age (fitted as a penalized spline with six

degrees of freedom, number of degrees of freedom evaluated by
AIC value) and sex (strata, 2 levels);

b. Model 2, Model 1 plus tobacco smoking status (factor, 3 cate-
gories), individual income (factor, 3 categories), and health risk
group (factor, 4 categories);

c. Model 3, Model 2 plus area-level covariates: small area socio-
economic index (continuous term), theproportionof non-Spanish
nationals (continuous term), distance to the closest primary care
unit (continuous term) + urbanicity (strata, 3 categories) and
average weekly of test-positive proportion (continuous term); and

d. Model 4 (main model), Model 3 plus health region (strata, 7
categories).

We performed six sensitivity analyses defined a priori:
a. Model 5 included potential mediators (diabetes, chronic

obstructive pulmonary disease, obesity, dyslipidemia, hyperten-
sion, and other cardiovascular disorders) to Model 4;

b. Model 6 included other socioeconomic indexes (inequity index,
Gini, and deprivation index) to Model 4;

c. Model 7 includedmultiple imputations with chained equations to
impute tobacco smoking status and body mass index, running
Model 5 and replacing obesity by body mass index in 10 imputed
datasets;

d. Model 8 included Model 4, with the outcomes restricted to
laboratory-confirmed COVID-19;
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e. Model 9 wasModel 4 but included COVID-19 diagnoses at nursing
homes, and

f. Model 10 included Model 4 in the subpopulation that did not
move ABS between 2015 and 2020.

Additional ad hoc sensitivity analyses based on our main model
(Model 4) included: (1) censoring the cohort on December 1, 2020,
allowing a maximum of 30 days to occur the event during the follow-
up; (2) adding distance to the nearest hospital; (3) adding population
density at the census tract level; (4) adjusting the smoking status by
using amissing indicator instead of considering themissing as “never”
smokers; (5) running the analysis on the cohort with COVID-19 diag-
nosis; (6) running the analysis on the cohort with COVID-19 diagnosis
at the primary care; (7) considering hospitalizations with COVID-19 as
the main cause of admission instead of all-cause admissions.

We evaluated the potential nonlinearity for age and body mass
index testing three to six degrees of freedom in a penalized spline. We
compared the AIC criteria for each model to determine whether non-
linearity was present.

We conducted several complementary analyses. To explore the
exposure modeling assessment, we replicated all previous models
(Model 1 to Model 10) using PM2.5, NO2, O3, and BC from the ELAPSE
model33 and Model 4 (main analysis) using the COVAIR-CAT esti-
mates for 2018.We explored potential effectmodification by the first
and second COVID-19 waves in Catalonia. We fit a time-stratified Cox
proportional hazards model defining strata by Wave 1 (March 1 to
June 20, 2020) and Wave 2 (June 21, 2020, to December 31, 2020) in
Model 4 of the main analysis. The periods defining waves were
defined by splitting the study period into the week with the lowest
number of COVID-19 cases in Catalonia (Fig. 1). To explore the defi-
nition of COVID-19-related hospitalization, we fit the Model 4 for
COVID-19-related hospitalization considering only admissions with
COVID-19 or respiratory as themain cause of admission instead of all-
cause admissions.

Finally, to explore potential non-linear exposure-response func-
tions between air pollutants and outcomes, we fit Model 4 of the main
analysis but allowing for nonlinearity using penalized splines with
three degrees of freedom. A detailed description of all models, com-
plementary analyses, and multiple imputations is provided in Supple-
mentary Methods.

All analyses were conducted in R (R Core Team, 2020) software
(version 4.1.2).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
In accordancewith current European and national law, the data used in
this study is only available for the researchers participating in this
study. Thus, we are not allowed to distribute ormake the data publicly
available to other parties. Researchers can request data from the
Agency for Health Quality and Assessment of Catalonia (AQuAs) by
contacting the Àrea Programa d’Analítica de Dades per a la Recerca i la
Innovació en Salut (PADRIS, padris@gencat.cat). Further information
on the requirements andhow to access the data are available at https://
aquas.gencat.cat/ca/fem/intelligencia-analitica/padris/index.html#-
googtrans(ca|en), including the COVID-19 prioritization procedure
https://aquas.gencat.cat/ca/fem/intelligencia-analitica/padris/procedi-
ment-urgent-prioritzacio-propostes-estudis-sarscov2-covid-19/
index.html#googtrans(ca|en).

Code availability
This study did not generate new or customized code/algorithm. The
Cox Proportional models were fit using the function coxph from the

survival R package39. The codes used in the analysis are available from
the corresponding author.
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